top of page

Hi! こんにちは!

I currently work on optimization methods for tree breeding problem.

My research interest is Mathematical Optimization, Applied Optimization, Convex Optimization, Second-Order Cone Programming, Mixed-Integer Non-Linear Programming. Please feel free to contact by email if you have any questions!

Awards & Fellowships

( 01 )

Awards & Fellowships

2019

ICCOPT 2019 Travel Grant

2014-2019

Postgraduate (doctoral and master) scholarship from Ministry of Education, Culture, Sport, Science and Technology of Japan (MEXT) Awardee

2008-2009

West-Java Provincial Scholarship Awardee

Education

( 02 )

Education

2016-2019

Tokyo Institute of Technology (IGP-A Program)

D.Sc. in Mathematical and Computing Science

Thesis: A Relaxation Approach for Mixed-Integer Second-Order Cone Programming (MI-SOCP) Problem

2014-2016

Tokyo Institute of Technology (IGP-A Program)

M.Sc. in Mathematical and Computing Science

Thesis: A Relaxation Approach based on Lifted Polyhedral Programming for Optimal Contribution Selection (OCS) Problem

2008-2012

Bandung Institute of Technology

B.Sc. in Mathematics

Thesis: A Genetic Algorithm for the Coolant Thermal-Hydraulic Analysis of Boiling Water Reactor

Teaching

( 03 )

Presentation

A Cone Decomposition Method with Sparse Matrix for Mixed-Integer SOCP problem
Sena Safarina, Tim J. Mullin, Makoto Yamashita,
ICCOPT 2019, the Sixth International Conference on Continuous Optimization,
Technical University (TU) of Berlin, (Berlin, Germany), August 5, 2019.

RIMS 2018

A Polyhedral Based Method for Optimal Contribution Selection Problem
Sena Safarina, Makoto Yamashita, Tim J. Mullin
京都大学数理解析研究所共同研究(公開型)「高度情報化社会に向けた数理最適化の新潮流」,
京都大学 数理解析研究所, (京都, 日本), August 6, 2018.

Cone Decomposition Method for Mixed-Integer SOCP arising from Tree Breeding
Sena Safarina, Makoto Yamashita,
International Symposium on Mathematical Programming 2018,
University of Bordeaux, (Bordeaux, France), July 4, 2018.

数理最適化の発展:モデル化とアルゴリズム

最適構成問題に対するLPP 緩和に基づいた整数計画問題による定式化
Sena Safarina, Makoto Yamashita,
京都大学数理解析研究所研究集会 「数理最適化の発展:モデル化とアルゴリズム」 [8月24日-8月25日],
京都大学数理解析研究所111 号室, (京都, 日本), 8月24日 , 2017.

A Lifted-Polyhedral-Programming Approach for Optimal Contribution Problems
Sena Safarina, Makoto Yamashita
SIAM Conference on Optimization 2017,
Sheraton Vancouver Wall Centre, (Vancouver, Canada), May 24, 2017.

An Efficient Second-Order Cone Programming Approach for Optimal Selection in Tree Breeding
Sena Safarina, Tim J Mullin, Makoto Yamashita
ICCOPT (International Conference on Continuous Optimization) 2016 Tokyo
the National Graduate Institute for Policy Studies, (Roppongi, Tokyo), August 8, 2016.

Publication

( 04 )

Publications

Sena Safarina, Satoko Moriguchi, Tim J. Mullin, and Makoto Yamashita
Discrete Applied Mathematics Vol 275, No. 31, Pages 111-125, March 2020.

Sena Safarina, Tim J. Mullin and Makoto Yamashita
Journal of the Operations Research Society of Japan , Vol. 62 , No. 4, pp133-151, November 2019

Makoto Yamashita, Tim J. Mullin, and Sena Safarina

Optimization Letters , Vol. 12 , No. 7. pp 1683-1697, September 2018

“A Cone Decomposition Method for Optimal Contribution Selection in Forest Tree Management”

Sena Safarina, Tim J. Mullin, Makoto Yamashita

RIMS Koukyuroku, No. 2108 , pp 14-21, 2019 April

高度情報化社会に向けた数理最適化の新潮流

(New Trends on Numerical Optimization in Advanced Information-Oriented Society) RIMS 共同研究(公開型) August 6-7, 2018

“An Application of Polyhedral Relaxations to Optimal Contribution Selection of Tree Breeding Problem”

Sena Safarina, and Makoto Yamashita

RIMS Koukyuroku, No. 2069 , pp 62-73 (2018)

数理最適化の発展:モデル化とアルゴリズム

(Development of Mathematical Optimization: Modeling and Algorithms)

RIMS 共同研究(公開型) August 24-25, 2017

bottom of page